当前位置:师资 > 教师简介:彭丽

教师简介:彭丽

发布时间:2019-05-31   阅读: 806次

 DSC_9213--.jpg


基本信息


姓名:彭丽

职称:讲师

电子信箱:lipeng_math@126.com

办公室:数学院北楼106

 

个人简介


彭丽,女,1988年9月出生,博士研究生,讲师。


学习工作经历


教育经历:

   2007.09-2011.06,衡阳师范学院,本科,数学与应用数学专业

2011.09-2014.06,湘潭大学,硕士研究生,应用数学专业,导师:周勇

2014.09-2017.06,湘潭大学,博士研究生,数学专业,导师:周勇

工作经历:

  2017.10-2019.10,湘潭大学数学与计算科学学院,博士后

  2019.05-至今,湘潭大学数学与计算科学学院,教师


研究方向


泛函微分方程、分数阶微分方程、分数阶偏方程


科研项目


主持的科研项目:

[1].博士后面上基金项目:非线性分布阶分数扩散-波方程的定性研究(编号:20

19M652785), 2019-2020.

参与的科研项目:

[1].国家自然科学基金面上项目:时间分数阶Navier-Stokes方程与扩散方程的定性研究究(批准号: 11671339),2017-2020

[2].国家自然科学基金面上项目分数发展方程的基本理论与最优控制(批准号:11271309),2013-2016


 论文专著


[1]. Li Peng, Yunqing Huang. On nonlocal backward problems for fractional stochastic diffffusion equations. Computers and Mathematics with Applications (2019), Accept.

[2]. Li Peng, Yong Zhou, A. Debbouche. Approximation techniques of optimal

control problems for fractional dynamic systems in separable Hilbert spaces.

Chaos, Solitons and Fractals, 118(2019),234-241.

[3]. Li Peng, Yong Zhou, B. Ahmad. The well-posedness for fractional nonlinear Schrödinger equations. Computers and Mathematics with Applications, 77(7)(2019): 1998-2005.  

[4]. Li Peng, A. Debbouche, Yong Zhou. Existence and approximations of

solutions for time-fractional Navier-Stokes equations. Mathematical Methods in

the Applied Sciences, 41(2018),8973-8984.

[5]. Yong Zhou, Li Peng, Yunqing Huang. Existence and Hölder continuity of

solutions for time-fractional Navier-Stokes equations. Mathematical Methods in

the Applied Sciences, 41(2018),7830-7838.

[6]. Yong Zhou, Li Peng, Yunqing Huang. Duhamel’s formula for time-fractional

Schrödinger equations. Mathematical Methods in the Applied Sciences, 41(2018), 8345-8349.

[7]. Li Peng, Yong Zhou, B. Ahmad, A. Alsaedi. The Cauchy problem for fractional Navier-Stokes equations in Sobolev spaces. Chaos, Solitons and Fractals, 102 (2017),218-228.

[8]. Yong Zhou, Li Peng. Weak solutions of the time-fractional Navier-Stokes

equations and optimal control. Computers and Mathematics with Applications, 73(6)(2017),1016-1027.

[9]. Yong Zhou, Li Peng, On the time-fractional Navier-Stokes equations,

Computers & Mathematics with Applications, 73(2017),874-891.

[10]. Yong Zhou, Li Peng, B. Ahmad, A. Alsaedi. Energy methods for fractional

Navier-Stokes equations. Chaos, Solitons and Fractals, 102(2017),78-85.

[11]. Yong Zhou, Li Peng, B. Ahmad, A. Alsaedi. Topological properties of

solution sets of fractional stochastic evolution inclusions. Advances in Difffference Equations, 2017(2017),90-119.

[12]. Yong Zhou, Li Peng. Topological structure of solution sets for semilinear

evolution inclusions. Zeitschrift füer Analysis und Ihre Anwendungen, 37(2) (2018),189-208.

[13]. Yong Zhou, Li Peng. Topological properties of solutions set for partial

functional evolution inclusions. Comptes Rendus Mathematique, 355(2017),45-64.

[14]. Yong Zhou, Li Peng, B. Ahmad. Topological properties of solution sets for

stochastic evolution inclusions. Stochastic Analysis and Applications, 36(1)

(2017),114-137.

[15] Jia Mu, Yong Zhou, Li Peng. Periodic solutions and S-asymptotically periodic solutions to fractional evolution equations, Discrete Dynamics in Nature and Society, 2017(2017), Article ID 1364532.

[16]. Li Peng, Yong Zhou, Bifurcation from interval and positive solutions of the three-point boundary value problem for fractional difffferential equations, Applied Mathematics & Computation, 257(C)(2015): 458-466.

[17]. Yong Zhou, Rongnian Wang, Li Peng. Topological Structure of the Solution

Set for Evolution Inclusions. Vol. 51. Springer, 2017.