当前位置:师资 > 教师简介:邓青英

教师简介:邓青英

发布时间:2019-03-07   阅读: 1556次

 邓青英.jpg



基本信息


姓名:邓青英

职称:讲师

电子信箱:qingying@xtu.edu.cn

办公室:南楼205

 

 

个人简介


邓青英,女, 博士, 讲师。


学习工作经历


教育经历:
  2014.09-2018.09,厦门大学,博士研究生,应用数学,导师:金贤安

  2011.09-2014.06,集美大学,硕士研究生,应用数学,导师:陈海燕

  2007.09-2011.06,江西理工大学,本科,数学与应用数学,导师:范丽君
 

工作经历:
  2019.01-至今,湘潭大学,讲师



主讲课程


 

   高等数学

 

研究方向


 

  研究方向:图论与组合纽结论

 招    生:欢迎对图论、带子图理论和纽结理论感兴趣的同学报考

 


科研项目


主持的科研项目: 

[1].国家自然科学基金面上项目,11671336,带子图、纽结和不变量,2017/01-2020/12,48 万元,在研,主持人:金贤安(本项目第五参与人),该项目主要研究带子图在扭曲对偶变换下所具有的性质以及带子图不变量在扭曲对偶变换下的变化情况, 并以平面图或高亏格带子图为工具研究纽结不变量,希望能推进解决一些公开的问题。



论文专著


[1] Qingying Deng, Haiyan Chen, On the Kirchhoff index of the complement of a bipartite graph. Linear Algebra and its Applications, 439(1) (2013)167-173.

[2] Qingying Deng, Haiyan Chen, On extremal bipartite unicyclic graphs. Linear Algebra and its Applications, 444(2014) 89-99.

[3] Meilian Li, Qingying Deng, Xian'an Jin*, A general method for computing the Homfly polynomial of DNA double crossover 3-regular links , PLoS ONE, 10(2015)5:e0125184.

[4]  Qinying Huang, Haiyan Chen, Qingying Deng, Resistance distances and the Kirchhoff index in double graphs. Journal of Applied Mathematics and Computing, 50(2016) 1-14.

[5] Meiqiao Zhang, Xian’an Jin, Qingying Deng, The Minimal Coloring Number Of Any Non-splittable Z-colorable Link Is Four, Journal of Knot Theory and Its Ramifications 26(13) (2017) Article ID:1750084.

[6] Qingying Deng, Xian’an Jin, Fengming Dong, Eng Guan Tay, Even subgraph expansions for the flow polynomial of planar graphs with maximum degree at most 4, The Electronic Journal of Combinatorics , 25(2) (2018)#P2.7.

[7] Qingying Deng, Xian’an Jin, Louis H Kauffman, Graphical virtual links and a polynomial of signed cyclic graphs, Journal of Knot Theory and Its Ramifications, 27(10)(2018)Article ID:1850054.

[8] Qingying Deng, Xian'an Jin. Characterizations of Eulerian and even-face partial duals of ribbon graphs. Discrete mathematics. 2018 (Major review).

[9] Qingying Deng, Xian'an Jin, Louis H. Kauffman. The generalized Yamada polynomials of virtual spatial graphs, Topology and its Applications, 256 (2019) 136-158, arXiv:1806.06462.

[10] Qingying Deng, Xian'an Jin, Louis H. Kauffman. Virtual Jones-Wenzl projectors of virtual Temperley-Lieb algebra, (2018) in preparation.